
}} .{{ 

* * 
{r 2} 

~ - ~ 

!} {r 

AN INVESTIGATION OF SPIN-ORBIT RESONANCE 
I ""' 

EFFECTS ABOUT THE GEOSYNCHRONOUS ORBIT V 

AFIT/GSO/AA/82D-2 

\ 

THESIS 

Thomas Sean Kelso 
Capt USAF 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY (ATC) 

AIR FORCE~ INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 



AFIT/GSO/AA/82D-2 

/ 

.~ 

/ 

AN INVESTIGATION OF SPIN-ORBIT RESONANCE 

EFFECTS ABOUT THE GEOSYNCHRONOUS ORBIT 

THESIS 

AFIT/GSO/AA/82D-2 Thomas Sean Kelso 
Capt USAF 

·. 

Approved for public release; distribution unlimited. 



~~-~~------------------------------------------~----~--

AFIT/GSO/AA/82D-2 

AN INVESTIGATION OF SPIN-ORBIT RESONANCE 

EFFECTS ABOUT THE GEOSYNCHRONOUS ORBIT 

THESIS 

Presented to the Faculty of the School of Engineering 

of the·Air Force Institute of Technology 

Air University 

in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

by 

Thomas Sean Kelso, B.S., M.B.A. 

Capt USAF 

Graduate Space Operations 

December 1982 

Approved for public release; distribution unlimited. 



Acknowledgments 

I should like to take this opportunity to thank those people who 

were so instrumental in the accomplishment of this thesis project. 

First and foremostis my wife, Rita, without whose support and under­

standing this undertaking would have been rendered much more difficult. 

Next, I would like to thank my thesis advisor, Dr. William E. Wiesel, 

who took the time to help in the selection of a topic which I found 

truly fascinating and whose guidance was helpful yet did not remove the 

challenges of this experience. I should also like to thank my fellow 

graduate student, Robert I. Boren, who worked on a similar topic and 

provided invaluable aid in overcoming our joint difficulties. And 

finally, I would like to thank the writers of the computer programs 

muMathm and WordStarm for making the mechanics of this thesis project 

much less tedious. 

TS Kelso 

ii 



Acknowledgments 

List of Figures 

List of Tables 

Notation 

Abstract 

I. 

II. 

Introduction 

Background • 
Objectives and Scope 
General Approach • 
Sequence of Presentation 

Theory • 

Geopotential Hamiltonian 

Contents 

· .. 

. .. 

Canonical- Transformation for the Geosynchronous Case • 
Resonance Transformations 

.. . 

Librational Analysis ... 
III. 

IV. 

Computer Application • 

Resonance Value Determination 
Plotting of Phase Portraits 
Librational Values 

Analysis 

Assumptions • 
Results 

Resonance Values 
Phase Portraits · 
Librational Periods 

Conclusions 
Recommendations 

Bibliography • 

.. 

Appendix A: Computer Programs and Subroutines 

Appendix B: Computer Output 

Vita • 

iii 

.. 

Page 

ii 

iv 

v 

vi 

viii 

1 

2 
'4 
5 
5 

7 

7 
15 
16 
24 

27 

27 
28 
29 

31 

31 
32 
32 
34 
36 
39 
40 

42 

44 

58 

60 



List of Figures 

Figure 

1 Orbit-Eqttator-Meridian Triangle 

2 Primary Resonance Structure • 

3 Librational Period -- Prima~y Resonance • 

iv 

. . . 
Page 

8 

35 

38 



List of Tables 

Table 

I SAO Standard Earth III Constants . . . . . . . . . . . . . . 
II 

III 

Primary Resonance Values -- Zero Eccentricity 
and Inclination ••••••••••••• 

Resonance Values -- Non-Zero Eccentricity 
and Inclination ••••••••••••• 

IV Librational Periods -- Primary Resonance 

\ 

v 

. . . 

Page 

31 

33 

33 

36 



A,B,C 

a 

e 

* F,F 

F .. s 

f 

G,H,L 

g 

h 

i 

k 

•t 

n 

Q,R_,S 

R 
e 

r 

s 

t 

u 

Notation 

Geopotential coefficients 

Semi-major axis 

Eccentricity 

Hamiltonian 

Unperturbed Hamiltonian 

J 2 Hamiltonian contribution 
... 

Secular J~ Hamiltonian contribution 

Secular J .. Hamiltonian contribution 

True anomaly 

Delaunay elements 

Argument of perigee 

Longitude of the ascending node 

Inclination 

Geopotential harmonic coefficients 

Constant 
\ 

Mean anomaly 

Index 

Geocentric mean rotation rate 

Generalized momenta - second transformation 

Geocentric mean equatorial radius 

Geopotential perturbing function 

Geocentric radial distance 

Generating function 

Generalized coordinate - second transformation 

Time 

Argument of latitude (f + g) 

vi 



•. .il'li.ai_"""""' _________ ----- -----

X,Y,Z 

x,y,z 

e 

T 

• 

Generalized momenta - first transformation 

Generalized coordinates - first transformation 

Right ascension 

Geocentric latitude 

Equatorial projection of the argument of latitude 

Geocentric gravitational parameter 

Geocentric longitude 

Mean longitude 

Longitude associated with J 22 harmonic 

Greenwich sidereal time 

Vernal equinox direction 

Sum of n 0 t + l 22 

Frequency constants 

' 

vii 



AFIT/GSO/AAi82D-2 

Abstract 

An investigation of the spin-orbit resonance effects about the 

geosynchronous orbit was undertaken to determine the existence and 

feasibility for use of additional stable equilibrium points in this 

regime for the placement of communications satellites. The Hamiltonian 

of the geopotential was developed in Delaunay elements using first and 

second order zonal and sectorial harmonic terms (J2 , J~, J~, and J 22 ). 

The resulting Hamiltonian, which was valid for all inclinations and 

small eccentricities, was reduced to a single degree of freedom through 

a series of transformations to allow computer generation of phase por-

traits and analysis of the structure and librational stability. 

Three resonance bands were discovered, two of which seemed practi-

cal for operational use. Although the second of these bands was con-

tained within the primary resonance structure, its width (246 meters) 

and librational period (625 years) appear useful for satellite placement 

at the additional stable equilibrium points. Additionally, the general 
\ 

·technique was demonstrated as a feasible alternative investigative tool 

to a purely analytic approach. 

viii 



I Introduction 

With the growth of world-wide communications systems, the use of 

geosynchronous satellites has become progressively more important over 

the past decade. Within the Department of Defense the geosynchronous 

communications satellite is becoming a vital link in C' -- Command, 

Control, and Communications. Unfortunately, the characteristics of the 

geosynchronous orbit present two major difficulties. 

Because current communications satellites require a minimum beam­

width separation, the fact that the nominal geosynchronous orbit is a 

circular, equatorial orbit, places an upper limit on the maximum number 

of satellites which can inhabit it, resulting in it being considered a 

scarce resource. Also, when basic resonance effects are considered, 

those arising from the triaxiality of the earth's figure, it is discov­

ered that this orbit has only four primary equilibrium points, with only 

two of these points being stable. Therefore, considerable station­

keeping is required to maintain the positioning necessary for adequate 

·communication separation. Modern satellite lifetimes can be limited by 

these station-keeping requirements. 

In an attempt to find a means to alleviate these problems, an 

inv~stigation of th~ spin-orbit resonance effects arising from the 

interaction of the spin of the nonspherical earth with a satellite orbit 

was conducted. It will be shown that these resonance effects result in 

multiple equilibrium points at near geosynchronous orbit and that these· 

equilibrium points, although not truly geosynchronous, may be useful in 

permitting an expanded use of this orbit for communications satellites. 
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Background 

A review of the .literature reveals ·that an extensive amount of 

research has been done concerning the effect of the earth's shape on 

satellite orbits. The majority of this research began with the advent 

of the artificial satellite in the 1950s. · In particular, the effect of 

the earth's oblateness has bee~ well established by severa~ researchers. 

Many varied approaches were taken, as iliustrated in the November 1959 

issue of The Astronomical Journal where three independent treatments of 

the 'main problem' of satellite theory were published~ 

Selected investigations have· a~tempted to determine the effects of 

the earth's longitude dependent harmonics on satellite motion. Because 

of its use for communications satellites, the geosynchronous orbit has 

proven to be of great interest. 

Blitzer (Ref 7,8), using a linearized theory, discussed equilibrium 

solutions for a geosynchronous satellite in a circular, equatorial orbit 

under the influence of the principle longitude dependent term, J 22 • 

Blitzer (Ref 4,5) later treated the effect, due to hig~~r order tesseral 

harmonics, on a geosynchronous satellite of small eccentricity and 

inclination. He showed that, due to the dominance of the J 22 term, only 

a slight displacement of the equilibrium positions occurred, although 

there.was a significant change in the librational periods. 

Musen and Bailie (Ref 22), in 1962, studied the motion of synchro­

nous satellites incorporating only the J 22 tesseral harmonic and the J 2 

and J, zonal harmonics. Their analytic technique agrees with Blitzer 

for synchronous motion in the equatorial plane. 

Allan (Ref 1), in 1965, discussed the ·motion of nearly circular but 

inclined synchronous orbits. In 1967 (Ref'2), he studied the effect of 
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resonance in inclination for synchronous satellites in nearly circular 

orbits when the positions of the nodes repeat relative to the rotating 

primary. He also studied the effect of resonance in eccentricity ana 

inclination for a synchronous satellite in a nearly equator.ial, eccen­

tric orbit which occurs when the longitude of the line of apsides 

repeats relative to the primary (Ref 3). 

In a book published in 1966, Kauia (Ref 19) developed expressions 

for the resonant disturbing function of the geopotential in terms of 

inclination and eccentricity functions and derived general expressions 

for the variation of orbital elements due to arbitrary zonal or tesseral 

harmonics. 

And, in a series of articles over the years, Garfinkel (Ref 15) has 

developed a formulation known as the Ideal Resonance Problem which has 

found wide application in resonance theory by treating specific cases as 

perturbations of that problem. 

From the preceding, it is apparent that considerable progress has 

been made in resonance theory, although it appears at this time that 

little hope exists for a general analytic solution except for certain 

specific cases. These include mostly satellites whose mean motion is 

strictly commensurate with the earth's rotation rate and whose orbits 

are at the critical inclination or have zero eccentricity. It should be 

noted that while Dallas and Diehl (Ref 12) claimed such a general solu­

tion in 1977, they were later shown by Jupp (Ref 17) to have made a 

serious error. Garfinkel (Ref 15), in his 1979 summary of the Ideal 

·Resonance Problem," lists th~ synchronous satellite with non-zero eccen­

tricity and the general p:q resonance ·between the period of revolution 

of the satellite and the rotation of the earth as two of the outstanding 
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unsolved problems of resonance theory. 

As a result, although the effort continues to find formal, global 

solutions to resonance problems, most recent efforts address themselves 

to specific satellite orbits or attack the problem via semi-analytic or 

numerical techniques such as used ·by N_acozy and Diehl (Ref 23). 

One such technique is the.computer plotting of phase portraits of 

the specific system Hamiltonian. Although this method has been used 

previously to provide some sort of physical feel, it would appear that 

little has been done t"o utilize the process as the primary investigative 

tool. While this technique provides information only in the regime· of 

the particular_inclination studied, it i~ valid for small eccentricities 

and permits investigation of all resonance terms associated with a . 

particular commensurability ratio. It is also easily modified to incor­

porate additional harmonic terms or study different commensurability 

ratios. But most importantly, it circumvents most of the mathematically 

sophisticated and algebraically laborious techniques required in the 

search for more general analytic solutions. 

Objectives and Scope 

This_ investigation will undertake to determine whether multiple 

equilibrium points exist ~or the geosynchronous resonance and, if so, 

just what the characteristics of these equilibrium points are. These 

_characteristics should indicate whether further investigations are jus­

tified to determine the usefulness of these points for the placement of 

communications satellites. 

A secondary objective of this investigation is to demonstrate the 

feasibility of the general technique of computer generation of phase 

portraits for the examination of geopotential resonant structures. 
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The scope of this particular investigation will .be limited to an 

examination of the spin-orbit resonances arising from the triaxiality of 

the earth's figure. The contributions from. the first and second order 

zonal and sectorial harmonics, the J 2 , ( J 2 ) 2 , J .. , and J 2 2 t·erms of the 

geopotential, will be examined for their affect on a near geosynchronous 

orbit. 

General Approach 

The Hamiltonian of the geopotential will be developed, using 

Delaunay's elements, by combining the secular first and second order 

zonal harmonic terms with the nominal two-body Hamiltonian, as extracted 

from Brouwer's 1959 article in The Astronomical Journal (Ref 9), and 

then developing the perturbing function arising from the primary sector-

ial harmonic term, J 22 • Once obtained, this Hamiltonian will then be 
. . 

converted, by means of a contact transformation, to another set of 

elements which will facilitate work for the geosynchronous case. At 

this point, each resonance term will be treated independently and 

another canonical transformation will be used to allow reduction to a 

single degree of freedom. This form will allow the resonance effects to 

be analyzed by use of phase portraits of this single degree of freedom. 

From these phase portraits, stable equilibrium points can be determined 

and the stability analyzed. 

Sequence of Presentation 

Chapter II presents the theoretical development of the system 

'Hamil toni an, the equations of motion for each resonance term, and the 

methods for determining librational stability. Chapter III discusses 

the computer application of these theoretical developments and Chapter 
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I 
IV p~esents an analysis of the results and conclusions of the study as 

weil as re-commendations for further research. 

I 

· ... 
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II Theory 

Geopotential Hamiltonian 

In determining the spin-orbit resonance effects for a near geosyn~ 

chronous orbit, initially the Hamiltonian for the geopotential must be 

obtained. The general form for the Hamiltonian may be written 

where F0 represents the contribution of the unperturbed potential, F 1 , 

F2 , and F- are the secular contributions of the J 2, J~, and J- terms, 
8 s 

and R22 is the disturbing function resulting from the J 22 term. The 

first four terms may be extracted from a 1959 Astronomical Journal arti-

cle by Brouwer (Ref 9) and written ignoring long period variations as 

'J2R-
1.1 2 e 15 L - ll(!!)2 + (!!)It) F2 = 4L 1 0 [ 32 (G) 

5 
( 1 s 5 G G 

3 L 6(!!)2 + 9(!!)-) + -(-) 6 (1 -
8 G G G 

- .!1(~)7(1 -
32 G 

2(!!)2 
G 

- 7(!!),.)] 
G 

3p 6J R-
(__2.(~)5 - .!1(~)7)(1 - 10(!!) 2 + 35 (!!) .. ) F" - e = 8Li o s 16 G 16 G G 3 G 

where 

L = /j;; t = mean anomaly 

G = L/(1-e 2 ) g = argument of perigee 

H = G(cosi) h = longitude of the ascending node 
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and p is the geocentric gravitational parameter, R is the geocentric 
e 

mean equatorial radius., a is the semi-major axis, e is the eccentricity, 

and i is the inclination. 

The general form of the geopotential, as listed in Hagihara (Ref 

16:459), is now used to determine the disturbing function due to the 

pri~cipal sectorial harmonic, J~ 2 • 

Here B is the latitude; A is the longitude, and A22 is the longitude 

associated with the J 22 coefficient. Since 

T 

Figure 1. Orbit-Equator-Meridian Triangle 

To e~press the disturbing function in terms of the Delaunay ele-

ments, B and A must first be converted. Examination of Figure 1 indi-

cates that the right ascension, a, of a satellite at point P would be 

expr~ssed as 

a = h + ~ 

and since the satellite's longitude is the difference between its right 
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ascension and the Greenwich sidereal time, a, then 

~ = a - a = h + 0 - a 

so 

The Greenwich sidereal time may also be expressed as 

a = not 

~ = h + o - n 0 t 

Letting 

t4J = not + ~2 2 

.so as ·to ~implify the following expressions, and performing some trigo­

nometric expansions 

3cos 2 Bsin(2h-2$+2o) .= 3cos 2 B[sin(2h-2$)cos2o + cos(2h-2$)sin2o] 

cos2o = cos 2 o - sin2 o 

sin2o = 2sinocoso 

.From spherital trigonometry, 

sino = sinucosi/cosB 

coso = cosu/cosB 

where u·is the argument of latitude, so 

and therefore 

cos2o = (cos 2 u - sin2 ucos 2 i)/cos 2 B 

sin2o = 2sinucosucosi/cos 2 B 

3cos 2 Bsin(2h-2.+2o) = 3sin(2h-2w)(cos 2 u - sin 2 ucos 2 i) 

+ 6cos{2h-2.){sinucosucosi) 

Note that the latitude dependence of the disturbing function has now 

disappeared and it is no longer necessary to express B in terms of the 

·Delaunay ele~ents~ 

Now, by substituting 
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and 

2 . 1 1 cos u = 2 + 2cos2u 

sin2 u = l - lcos2u 2 2 

• 1 . 2 s1nucosu = -s1n u 
2 

into the above equation and simplifying 

·3cos 2 Bsin(2h-2~+26) = i<1+cos 2 i)sin(2h-2~)cos2u 

+ isin2 isin(2h-2~) 

+ 3cosicos(2h-2$)sin2u 

Further, noting that 

sin(2h-2$)cos2u = ![sin(2h-2~+2u) + sin(2h-2~-2u)] 

cos(2h-2,)sin2u = ~[sin(2h-2$+2u) - sin(2h-2~-2u)] 

and substituting these expressions into the last equation yields 

3cos 2 Bsin(2h-2$+26) = i<1+cosi) 2 sin(2h-2~+2u) 

+ t<1-cosi) 2 sin(2h-2$-2u) 

Finally, writing 

u = f + g 

where f is the true anomaly, and substituting back into the expression 

for the disturbing function results in 

pR2 

R2 2 = r~J 22 [~(1+cosi) 2 sin(2g+2h+2f-2$) 

10 



3 . 2.·. ( h ) + -sln 1s1n 2 -2$ 2 . 

+ t<I-cosi) 2 sin(-2g+2h-2f-2$)] 

To express this term so_lely as a funct~on of the Dela~nay elements, r 

and f must be expanded in terms of the mean anomaly, 1, and substituted 

into the above expression. Note·that up to this point in the develop-

ment of the geopotential Hamiltonian, a completely general expression 

has been formed, valid for all eccentricities and inclinations and 

limited only by the number of zonal and sectorial harmonic terms 

included in the treatment. 

Using r and f as listed by Brouwer and Clemence (Ref 10:76-77) and 

retaining terms to the seventh power in eccentricity, 

r 
- = 
a 

1 1 3 3 
1 + e(- cost) + e 2(2- ~os21) + e 3 (~os1 - ~os31) 

1 1 5 45 125 + e'(3cos21 - 3cos41) + e 5 (-
192

cost + 128cos31 - 384cos51) 

1 2 27 + e&(- ~os21 + ~os41 - 80cos6t) 

7( 7 567 3 4375 5 + e 
9216

cost -
5120

cos 1 + 
9216

cos 1 
16807 
46080cos7t) 

f (2 . ) 2(5 . 2 ) ·< 1 . 13 . 3 ) = 1 + e s1n1 + e _4s1n 1 + e~ - 4s1n1 + ~1n 1 

+ e'(- !!sin21 + 
10

9
3
6
sin41) + e 5 (_1sint- 43sin3t + 10

9
9
60

7sin5t) 
24 96 64 

6( 17 . 2 451 . 4 1223 . 6 ) + e 
192

s1n 1 -
480

s1n 1 + 
960

s1n 1 

7( 107 . 95 . 3 5957 . 5 47273 . 7 ) + e 
4608

s1n1 + 512s1n 1 -
4608

s1n 1 + 
32256

s1n 1 

Now, converting to canonica.l units (R = l1 = 1) and substituting these 
e 

expressions into R22 
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5 -~5-
384 

143 7) . • ( 2 ) 
18432e s1n 1+2g+ h-2' 

313 7) • ( ) 
30720e s1n 1-2g-2h+2w 

+ (1 - te 2 + ~~e~ - 2 ~~e 6 )sin(21+2g+2h-2~) 

+ (- ~~ - --7--e 6 )sin(21-2g-2h+2~)· 
. 24 240 

( 7 123 3 489 5 1763 7) • ( ) + ~ - -r6e + 128e - 2048e s1n 31+2g+2h-2' 

( 81 5 81 7) • ( 3 2 ) + - 1280e - 2048e s1n 1- g-2h+2$ 

17 115 601 . + (~e2 
- ~e~ + 48e 6 )sln(41+2g+2h-2$) 

+ (- 4~e 6 )sin(41-2g-2h+2$) 

+ (845 3 - 32525 5 + 208225 7) • (58+2 +2h-2·•·) 
· 48 e 7 6 8 e 6144 e 8 1 n ~ g , 

(533 ~ 13827 6) • (6 h ) + -rGe - 160 e s1n 1+2g+2 -2~ 

(228347 5 3071075 7) • (7 2 2h 2 ) + 3840 e - 18432 e sln t+ g+ - ~ 

73369 . + ( 720 e
6 )sln(81+2g+2h-2~) 

12144273 . + ( 71680 e 7 )sln(91+2g+2h-2$)] 

+ ~in2 i[(l +. ~2 + 1~e' + ~~e 6 )sin(2h-2~) 

+ (3 + 27 s + 261 5 + 143097 7) • (ft+2h 2·•·) 
~ 16e . 128e 6144 e Sln ~ - , 

( 3 27 s 261 5 14309 7) • ( ) 
+ - 2e - 16e - 128e - 6144e Sln t-2h+2~ 
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+ (- ~e 2 
- fe' -

1:!e 6 )sin(21-2h+2~) 

+ {~ 53 3 393 5 24753 7) • (3 2h 2 ) 
~ - 256e - 10240e 810 1- + ~ 

+ <r~e~ + ~~~e')8in(41+2h-2~) 

+ (- i~e' - ~~~e 6 )8in(41-2h+2~) 

+ {1773 5 4987 7) • (5 ) 
256

e -
6144

e 81n 1+2h-2w 

{ 1773 5 4987 7) • (5 2h ) + -~ + 6144e 81n 1- +2~ 

3167 . + {- 320e
6 )81n{61-2h+2~) 

( 432091 7) • ( 2h 2 ) + 
30720

e 8ln 71+ - ~ 

+ (-
4~~~;~e 7 )8in(71-2h+2~)] 

' 

+ <4 ~e 3 + 7!~e 5 + 3~~i0e 7 )sin(1-2g+2h-2~) 

+ (- 1 + 1e 2 - Ue .. + ~6 )8in(21+2g-2h+2~) 
2 16 288 

+ <
2
!e .. + 2r0e 6 )8in(21-2g+2h-2~) 

7 123 489 1763 . + (- -e + -e3 - -e5 + --e7 )sln(31+2g-2h+2•'•) 
2 16 128 2048 ~ 

+ < 1 ~!0 e 5 + 2~!8e 7 )8in(31-2g+2h-2\jl) 

+ (-
1 ~e2 + 

1!5
e .. -

6~~e 6 )sin(41+2g-2h+2~) 
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4 . 
+ <45 e 6 )sin(41-2g+2h-2~~ 

+ (- 845e' + 32525 5 208225 ') . ( ) 48 768 e - 6144 e s l.n 51+2g-2h+2 ~ . 

( 15625 7) • ( ) 
+ 129024 e s l.n 5 .1-2g+~h-~ ~ 

( 228347 5 3071075 ') . ( 2 2h ) 
+ ~ 3840 e + 18432 e s1.n 71+ g- +2~ 

73369 . . + (-
720 

e 6 )s1n(81+2g-2h+2w) 

Although this form of R22 is now limited to small eccentricities,_ t~e 

practical limit, as noted by Kovalevsky (Ref 20:55), is of sufficient 

magnitude as to have no further affect on this treatment. Obviously, 

for small eccentricities, carrying the expansion to the seventh power in 

eccentricity should allow sufficient accuracy for this investigation. 

Examination of the above expansion of R22 indicat~s the existence 

of many resonance terms, permitting investigation of resonances other 

than the geosynchronous resonance merely by selecting the appropriate 

terms. For the geosynchronous case, however, resonance occurs when the 

mean.motion of the satellite is commensurate with the mean rotation rate 

of the earth, leading to selection of terms including 21-2~ in the 

trigonometric argument. 

Retaining only the near geosynchronous resonance terms and comple-

ting the transformation to Delaunay elements yields 

J-2 2 3 
R22 = -[-(1 + !!)2(- 233 + 119(.~)2 + 43(Q),. + 28358(-LG)')sin(21+2g+2h-211J) 

L6 4 G 288 96 L 96 L 
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3 
+ -(1 

4 

The geopotential Hamiltonian is now expressed completely as a function 

of the Delaunay elements and time as 

F = F(1,g,h,L,G,H,t) = F0 + F 1 + F2 + F~ + R22 s s 

Canonical Transformation for the Geosynchronous Case • 

In order to simplify calculations later in this development, a new 

set of variables is selected which comprises a canonical transformation 

such that two of the new momenta variables are small for the geosynchro-

nous equatorial case. These new momenta are defined as 

X=L=/};8 

Y = L - G = /P8[ 1 - I ( 1-e 2 ) ] 

Z = G - H = /pa(l-e 2 )(1-cosi) 

As a result, the generating function becomes 

82 = X1 + (X - Y)g + (X - Y - Z)h 

so 

X = R, + g + h y = - g - h z =- h 

The Hamiltonian for the geopotential may now be expressed as 

F = F(x,y,z,X,Y,Z,t) = F0 + F1 + F2 + F~ + R22 s s 

where 
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with 

- ~~A 7 (- 8 + 32B- 44B 2 + 28B 3 
- 7B~)] 

+ 
1~~c~ ~ ~ 5 + 2~~C 6 )sin(2x-2$) 

+ 1(2B;..B2 )(.k + .!.k2 + ~~ 
2 2 .4 8 

- 395c~ + 423C5 - 14641C6)sin(2x+2y-2z-2$) 
16 32 

+ ~B2 (ic 2 + ~~ - 1 ~~c~ + ~5 - 2~0C 6 )sin(2x+4y-4z-2$)] 

X A=­
X-Y 

z 
B=­

X-Y 
Y·· c = X 

Note that for the near geosynchronous case, the coefficients B and C are 

small while the coefficient A is approximately unity. From this obser-

vation it can be seen that the first resonance term is the strongest, 

followed by the second and third terms respectively. 

Resonance Transformations 

Now that a general form of the geopotential Hamiltonian has been 

developed for the geosynchronous case, each of the three resonance terms · 

may be individually examined. That is, the geopotential Hamiltonian may 

be considered to consist of the first and second order zonal terms along 
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with a·single resonance term from the disturbing fun~tion. The justifi-

cation for this approach lies in the assumption that in the immediate 

region of each resonance band, the equations of motion are dominated by 

the corresponding resonance term. The relative strengths of the three 

terms should guarantee this result. 

To facilitate this examination, phase portraits of the geopotential 

Hamiltonian will be used. In a phase portrait, each generalized coordi-

nate and its associated momentum make up two of the dimensions of the 

.phase ·space. The real advantage to this representation is that paths 

corresponding to particular unique solutions of the system Hamiltonian 

will be produced (Ref 2J:l73). 

At this point, however, the geopotential Hamiltonian has six dimen-

sions _arising from the three generalized coordinates and their conjugate 

momenta. And since time is still explicit in the Hamiltonian, an addi-

tional ·dimension is introduced. These seven dimensions constitute what 

is referred to as a motion space. Because it is extremely difficult to 

conceptualize a trajectory in a seven-dimensional space, it would be 

extremely advantageous if the geopotential Hamiltonian could be limited 

to only .two variable dimensions to permit plotting of these trajecto-

ries. This result may be accomplished by reducing the geopotential 

Hamiltonian to a single degree of freedom and eliminating the explicit 

time dependence through the use of a canonical transformation. 

In each case, a new canonical transformation will be defined such 

that 

"* * . F = F (_,_,s,Q,R,S,_) = F(x,y,z,X,Y,Z,t) at 

where the associated generating function S2 will be of the form 
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These transformation~ will yield a Hamiltonian for each resonance of the 

form 

with 

·1 
Fo = 2gT 

These transformations will be done in such a way that ~-he functional 

forms of F0 , F1 , F2 s' and F,s will always be as listed above. The only 

change from resonance to resonance will be the functional dependence of 

the coefficients A, B, and C on the generalized momenta Q, R, and S. 

-The particular resonance term selected from the disturbing function will 

be transformed so that its trigonometric argument will depend upon a 

single generalized coordinate. 

By selecting a transformation of this form, three constants of the 

motion result. Since neither q orr appear explicitly in the resulting· 

geopotential Hamiltonian, Q and R are constants. Also, because the 

geopotential Hamiltonian describes a natural system, it represents the 
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total system energy, which, due to the lack of an explicit time depend-

ence, is also conserved. As a result, the new Hamiltonian is reduced to 

one degree of freedom, permitting the use of phase portraits. 

For the first and primary resonance condition, 

33
22 23 38 109 35 35 

= ~(4-4B+B2 )(1 - 5C + ~2 
- ~s + ~~ - 48C 5 + 288C6 )sin(2s) 

By noting that the trigonometric argument of this term expressed as a 

function of x, y, z, and t (as developed in the previous section) was 

then 

By letting q = y and r = z, the generating function becomes 

and the·refore 

and 

X = S 

A'= _s_ 
S-Q 

y = Q 

B = R 

S-Q 

Z = R 

C=~ s 

Equilibrium points exist where the time derivatives of the only 

remaining generalized coordinate in the Hamiltonian and its associated 

momeqtum are both zero. That is when 

ds 
-=-dt . 

* aF 
-= 0 as and 

* dS aF -=-= 0 
dt as 

Therefore, for the first resonance term, the equilibrium points 

·exist where 
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+ Ae(- 105 + 120B _ 1485B2 + 525B3 _ 1155B~)] 
4 8 4 32 

_ ~[(A5-A7)(- _!1 + 75 B _ 675B 2 + 525B 3 _ 525Btt) 
88 1 

• 2 4 4 16. 

T A6 (- 11 + 90B - 945 B2 + 210B3 - 945 Bit) 
2 4 16 

3J22 545 385 35 
- 48 1 [(4-4B+B 2

)(- 6 + 35C - 46C 2 + 38C 3 
- ~tt + ~5 - 24C&) 

+ A(4B-2B2 )(1 - 5C + ~2 
- ~~ + 

1
2:c' - ~5 + 2~~C 6 )]sin(2s) 

- n 0 = 0 

and 

dS 3J 22 23 38 109 35 35 
. dt = ~(4-4B+B2 )(1 - 5C + ~2 

- ~~ + ~' - 48C 5 + 288c 6 )cos(2s) 

= 0 

For the second resonance term, 

3J22 9· 19 85 395 423c 5 141 
R22 ~ 286 (2B-B2 )(2C + ~2 + ~~ - ~tt + 32 - ~6 )sin(2s) 

so, 

s = x + y - z - n 0 t - A22 

and choosing 

q = y r = z 

yields 

82 = Qy + Rz + S(x + y- z- n 0 t - A22 ) 
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and therefore 

X = S 

s A=--
. Q 

y = Q + s 

S-R 
B=-

Q 

Now, the equilibrium condition becomes 

Z = R- S 

c =~ s 

ds 1 J 2 
3 3 9 9 3 3 

--=~-~[A(--+ -B- -B2) +A~(-- -B)] dt s s 2 2 4 2 2 

+ Ae( 1S _ 165B + 315B2 _ 105B3 )] 

4 8 8 

- :~: 1 [(A 5 - A7
)(- l~ + 75B-

6~5B2 + 
5!5

B5
- S~~B•) 

3
J 22 9 49 1555 10015 1269 423 

- 28 , [(2B-B2)(l- 22C - ~2 -~3 + 32 c~ - ~s + ~&) 

- A(2-2B)(~2 + ~2 + ~s - 395c~ + 423cs - 14641c&)]sin(2s) 
4 8 16 32 

- n 0 = 0 

and 

dS 
3

J 2 2 9 + ~2 85 _ 395c~ 423c 5 141 
dt = ~(2B-B2)(~ ~ + ~s 16 + 32 - ~6)cos(2s) = 0 

For the final resonance term, 

s = x + 2y - 2z - n 0 t - A22 q = y r = z 

S2 = Qy + Rz + S(x + 2y - 2z - n 0 t - A22 ) 
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X = 8 y = Q + 28 Z = ·R- 28 

A= 8 . 28-R C = 2S+Q -- B =--S+Q S+Q s 

and the resonance condition becomes 

+ A8 (2!5 _ 4~5B + 21!5B2 _ 3~5Bs + 1~~5B-)] 

3J- 15 . 675 525 525 
- o;-rr[(A5 -A 7 )(-- + 75B- -B2 + -B3 --B-) as . 2 4 4 16 

+ A8 (- 135 + 425B _ 3075B2 + 525 B3 _ 1925B-)] 
2 4 16 

3J 2 2 2 14 46 29 91 7 ... 
- 4S'[B2(3C - f5C2 - ISCS + ~- ._ 4QC5 + 2QC6) 

- A(4B-2B2 )(_L, 2 1 a - _l_L..- + ~s 7 s)] • ( ) ~ + ISC ~ ~ - 240c s1n 2s 

- n 0 = 0 

Obviously, for all three resonances, the equilibrium points will occur 

where 

8 = (2n+1 hr 
4 

n =:= 0,1,2,3 

This observation can be made from a brief examination of the first and 
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second partial derivatives of the geopotential Hamiltonians. The gen-

eral form of the first partial derivatives is 

* .!!_- kcos(2s) as -

where k is a constant for some fixed value of S corresponding to the 

value at the equilibrium point. Now, the second partial derivatives 

have the form 

* a2 F 
~ = - 2ksin(2s) 

indicating a negative value when n is even and a positive value when n 

is odd. * Because 32 F /38 2 is of order 1/S-, which is always greater than 

zero, then, by the Second Derivative Test, a local minimum exis when n 

is odd and a saddle point exists when n is even. The local minima 

correspond to stable equilibrium points and the saddle points to unsta-

ble equilibrium points. This treatment assumes that the cross partial 

terms are negligible, which, due to the system geometry, should be 

expected. This assumption was subsequently verified through the use of 

numerical techniques. 

Although each resonance term has identical values of s defining the 

equilibrium points, their interpretations are slightly different. For 

the {irs.t term, 

which for the nearly circular, nearly equatorial case of interest to 

this investigation 

R. s f 

which means that the stable equilibrium points exist where the 'mean 
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longitude' of the satellite, A , is 
m 

A s 
m 

(2n+lhr 
4 + :\22 n = odd 

Since the values of s for the other two resonance terms vary only 

by subtracting differing multiples of the ·argument of·perigee, g, the 

stable points for these resonance bands exist where. 

A s 
m 

(2n+l)11' 
4 + g + :\22 

A 
m 

(2n+I)1r 
s 4 +· 2g + :\22 

n = odd 

n = odd 

Unstable points occur for even values of-n. 

(Second Resonance) 

(Third Resonance) 

The corresponding values for S are somewhat more difficult to 

determine. Computer analysis will be used to determine these values and 

to plot the structure of the resonances. 

Librational Analysis 

Once the stable equilibrium points have been located for each 

resonance, there are basically two methods for obtaining values for the 

period of libration about them& The first method would involve the 

evaluation of a closed line integral along a contour of constant energy. 

Since the equations of motion were developed for the remaining general-

ized coordinate and momentum, the period of libration for any given 

energy contour may be expressed as the closed line integral of either 

I~ s or I~ s 

where S and s are the time derivatives of S and s, respectively, and are . 

each functions only of S and s. To attempt to determine the period of 

libration analytically using this method would be extremely difficult, 
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and yet, a numerical evaluation, while computationally intensive, should 

yield very good results. 

The second method involves the use of linear analysis to estimate 

the basic oscillatory period in the immediate region of the stable 

equilibrium points. While not yielding as specific a result as the 

previous method, it is much less computationally intensive and should 

result in an answer sufficient for the purposes of this investigation. 

Using the Chain Rule of calculus 

as as ISs = asc5s + agc5S 

c5S = as 15s + as 15s 
as as 

Now, since 

* • aF 
s =- --as 

* ~ = _aF_ 
as 

therefore 

as 
-= as 

and 

a~ as 
-=-= as as 

Assuming again that the cross partial terms are small compared to the 

other terms, the resulting system of equations becomes 
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or 

(w1 and w2 are constants, as a~l partial derivatives are evaluated at 

the equilibrium points). Taking the time derivative of the first equa-

tion and substituting into it the second equation yields 

which is the equation of motion for a harmonic oscillator with frequency 

lw 1 w2 • 

While this method is somewhat more involved analytically, th~ 

resulting frequency should.prove very easy to evaluate numerically. 

Using an approximation of the limit definition of a second partial 

derivative and the fact that the first partials are identically zero at 

the equilibrium points yields 

* 3F (S+AS,s)/3S 
AS 

* . a F ( s , s +As ) I as 
As 

Sine~ these partials have·already been calculated above, it is a simple 

matter (once these equations are programmed) to approximate the fre-

quency of oscillation by using small values for As and AS. 
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III Computer Application 

In implementing the theory described in Chapter II, ·four basic 

programs were· developed. This chapter will describe those computer 

algorithms used for the determination of resonance values, plotting of 

the phase portrait, and the two methods of determination of the libra­

tion period about the stable equilibrium points. Listings of the 

computer algorithms employed are provided in Appendix A. 

Crucial to the implementation of all the programs used in this 

investigation was the programming of the equations of motion developed 

~n Chapter II. These equations were located in the subroutine FDF and, 

when passed the values of s and S along with the value of the resonance 

of interest, provided the values of the Hamiltonian and its two partial 

derivatives. 

Resonance Value Determination 

The initial step taken to ascertain the utility of each resonance 

structure for use in th~ placement of satellites was to find the loca­

tion of the equilibrium points, both stable and unstable, and the width 

of the resonance structure. The program VALUE was written for this 

purpose. 

$ince the equilibrium values of s were readily determined from the 

equations of motion, finding the location of the equilibrium points 

required only that the value of S, for the zero point of the time 

derivative of s, be determined along these equilibrium values of s. To 

·accomplish this goal, a binary search for the zero point of the time 

derivative was employed in the subroutine RESON. Once the equilibrium 

values for S had been determined, the location of the four equilibrium 
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points for each resonance structure would be known. To give more of a 

physical feel for their location, their radial distance from the nominal 

two-body geosynchronous orbit was also determined. 

The width of the resonance structure was found by determining the 

roots of the Hamiltonian at the value of the unstable equilibrium points 

along the azimuths of the stable equilibrium values of s. Initially, 

the function values of the geopotential Hamiltonian for the stable and 

unstable equilibrium points were determined. Since the function value 

of the unstable equilibrium points defines the boundary of the stable 

region, the roots of these values along the azimuth of the stable equi-

librium points describes the maximum width of the resonance. In the 

subroutine ROOTS, Newton's method 

x.+l = x. - f(x.)/f'(x.) 
1 1 1 1 

for finding the roots of an equation was employed. Once the two roots 

were determined, the distance between them was found by converting back 

to distance units (DUs) and finally to meters. 

The results of VALUE should serve to give an idea of the physical 

location of the equilibrium points along with a feeling as to whether 

the size of the resonance structure is adequate for satellite placement. 

Plo~ting of Phase Portraits 

Once the general characteristics of a given resonance structure are 

determined, the actual structure of the resonance may be plotted as a 

phase portrait. It should first be noted, that since the basic struc-

ture of each of the three resonance bands considered in this investiga-

tion is identical, the technique used, with some modifications, is the 

same for all three bands. 

In order to generate the phase portraits, a contour following 
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subroutine, furnished by Dr. William E. Wiesel and modified slightly by 
. . 

the author, was used. This subroutine, CONTUR, which utilizes Newton's 

method for ~inding roots generalized to functions with two independent 

variables, was employed in conjunction with a plotting routine for the 

CALCOMP 1038 plotter, i"n the subrouti~e DRAW, in generating the phase 

po~trait in the program RSPLOT. 

Librational Periods 

Each of the two methods described in Ch~pter II for determining the 

period of libration about the stable equilibrium points was implemented. 

In the application of the line integral approach in the program TIME, 

the subroutine· DRAW was modified to create the subroutine PERIOD. This 

approach was used in order to take advantage of the already developed 

algorithm for generating the points for a given energy contour. As 

these points were generated, an elementary numerical integration tech-

nique was employed to determine the value of the integral. To simplify 

the calculation of the distance between successive points, an approxima-

tion was made to use the largest of the two step sizes ··of s or S. This 

method is actually an adaptation of the technique used in CONTUR to find 

the next point along the contour. Switching of which step size was used 

necessarily meant switching of which form of line integral was being 

used, but this switching was also easily performed using the existing 

structure of CONTUR. Once the value of the line integral was deter-

mined, the result, expressed in time units (TUs) was converted to mean 

solar days. 

The second approach, using the method of linearization, proved as 

easy to implement. as expected. In the program TIMES, values of the 

second partials of the Hamiltonian with respect to both s and S 
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* . * (a 2 F /'ds 2 and a2 F /38 2 ) were calculated numerically from the values of 

the first partials provided through the subroutine FDF. These values 

were then multiplied together and the square root taken to provide the 

frequency of oscillation. This frequency was then converted to a period 

in mean solar days. 

~ I 
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IV Analysis 

With the design of the computer algorithms completed, the remaining 

portion of this investigation now centers on an analysis of methods used 

and their validity and implications. Before turning to the actual 

examination of the results, it is first necessary to stipulate the 

assumptions made in their generation. 

Assumptions 

Although the theory, as developed in Chapter II, for the investiga­

tion of the geosynchronous spin-orbit resonances is quite general, 

certain assumptions had to be made during the computer application of 

this theory in order to obtain the results. None of these assumptions, 

however, will cause any significant changes in the conclusions to be 

drawn from this study. Throughout the development of the computer 

algorithms, an effort was made to permit these assumptions to easily and 

readily changed to allow further investigation of this subject. 

Necessarily, a certain set of constants ~o be used for definition 

of the geopotential was required. These constants, as derived from the 

SAO Standard Earth III (Ref 13), are listed in Table I below. 

TABLE I 

SAO Standard Earth III Constants 

J2 = 1082.637 X 10-6 

J,. = - 1.617999 x 10-6 

J22 = 2.7438636 x 1o-s 

Do = 5.86729371 X 10-2 rad/TU 

R = 6.378140 X 10 6 meters e 
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Another assumption involved the setting of the values of the two 

constant momenta, Q ~nd R. In the development of the computer algo­

rithms, it was assumed that it would be advantageous to initially 

specify some particular nominal eccentricity and inclination for inves­

tigation. Careful examination of· the equations of motion developed in 

Ch~pter II along with their implementation fo~ plotting of the phase 

portrait in Chapter III indicated that, as the· satellite moves along a 

contour of constant energy, the requirement that Q and R·are constant 

dictates that the eccentricity and inclination be constantly changing. 

·since these changes should be smat 1_, the values of Q and R were det-er-

. mined by using the nominal values of eccentricity and inclination of 

interest at the nominal two-body geosynchronous radius. Admittedly, 

this determination is somewhat arbitrary and was selected primarily for 

its ease of computation. Alternative methods of calculating the values 

used for Q and R, however, should cause minimal changes in the results. 

Results 

Resonance Values. With the specification of the necessary assump­

tions clearly stated, the first step in obtaining the results was to 

determine the locations of the equilibrium points and the width of the 

resonance structure for each resonance for a particular nominal eccen­

tricity and inclination. Initially the structure was examined for zero 

eccentricity and inclination. Although the primary resonance band 

displays structure for these conditions, examination of the geopotential 

Hamiltonian for the remaining two bands indicates that no structure will 

result with either zero eccentricity or inclination. Table II lists the · 

results of these ~onditions for the primary resonance (Resonance 1) but 

not for the remaining resonances since they will have zero width and are 
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of little practical interest. Positions of the equilibrium points are 

given relative to a nominal geosynchronous radius. 

TABLE II 

Primary Resonance Values -- Zero Eccentricity and Inclination 

Stable 

Resonance 1 + 2053.63 m 

Unstable 

+ 2117.04 m 

Width 

84513.86 m 

Note that the effect of the nonspherical nature of the earth's figure is 

.to mov·e the location of both the stable and unstable equilibrium points 

out by a distance of approximately 2 kilometers from a nominal two-body 

geosynchronous orbit. This result is in good agreement with previous 

studies. More detailed results are contained in Appendix B • 

. To demonstrate the effect of a case of non-zero eccentricity and 

inclination of more practical interest for use with geosynchronous 

communications satellites, the approximate eccentricity and inclination 

for FltSatCom V (International Designation 1981 073A, NASA Catalog 

Number 12635) were used. This particular satellite was chosen as the 

geosynchronous satellite having both the largest eccentricity and incli­

nation listed in the NASA Satellite Situation Report (Ref 24). Charac­

teristics for the three resonance structures for e = 0.025 and i = 0.11 

radians are listed in Table III. 

TABLE III 

Resonance Values -- Non-Zero Eccentricity and Inclination 

Resonance 1 

Resonance 2 

Resonance 3 

Stable 

+ 2012.19 m 

- 12.87 m 

- 2069.46 m 

33 

Unstable 

+ 2075.03 m 

- 13.14 m 

- 2069.46 m 

Width 

84192.80 m 

246.04 m 
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Some obvious conclusions may be drawn from these results. First, 

changing the eccentricity and inclination does have some effect on the 

location of the stable and unstable equili~rium points and the width of 

the resonance structure, although not very much. Second, with a width 

of over 84 kilometers, the primary resonance engulfs the equilibrium 

points of both the second and third resonances. And finally, for any 

reasonable eccentricity and inclination, the width of the third reso­

nance structure seems to preclude its use for any practical satellite 

.placement. As a result of this final conclusion, the third resonance 

band was dropped from further consideration. 

Phase Portraits. Once the structural characteristics of the three 

resonance bands had been determined, the next step was to generate the 

phase portraits of these bands. It was decided that the only phase 

portrait generated would be that of the primary resonance. The reason­

ing behind this decision lay in the fact that the general structure of 

the two resonances being considered was basically identical, with only 

the scale being dif~ere~t. Since the scale has already been specified 

in Table II, it was felt to be unnecessary to generate more than one 

phase portrait. Since the secondary objective of this investigation was 

to demonstrate the feasibility of this technique as an investigative 

tool,. the decision to investigate other eccentricities and inclinations 

or to generate additional phase portraits was left to future researchers 

interested in more specific cases. 

The results of the generation of the phase portrait for the primary 

·resonance with the values of eccentricity and inclination specified in 

use for generating Table II are illustrated in Figure 2. Due to 

restrictionn imposed by the scaling of the phase portrait, a conformal 
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mapping was used in the plotting of the results rather than plotting the 

results in polar coordinates. What appears to be a straight line 

slightly in. from the stable and unstable equilibrium points is actually· 

the secondary resonance's unstable equilibrium contours drawn to the 

same scale. The result. gives a feel ~or the relative locations of the 

tw~ resonance structures and t~eir relative sizes. The si~gle line 

width is an upper limit for the width of this structure on the scale of 

the primary resonance. 

Librational Periods. To demonstrate the more involved, and 

·presumably more precise method of. determining the period of libration 

about the stable equilibrium points, the·line integral method was 

applied to the primary resonance. 

.~ 
TABLE IV 

Librational Periods Primary Resonance 

Contour Period Contour Period Contour Period 

1 670.94 days 9 440.81 days 15 293.33 days 
440.25 days 292.77 days 

2 703.93 days 
10 398.96 days 16 281.00 days 

3 74 7. 38 days 398.41 days 280.44 days 

4 806.99 days 11 368.08 days 17 270.13 days 
367.53 days 269 .• 58 days 

5 900.46 days 
12 343.85 days 18 260.4 7 days 

6 1109.36 days 343.30 days 259.91 days· 

7 638.64 days 13 324.09 days 19 251.79 days 
638.08 days 323.53 days 251.24 days 

8 504.43 days 14 307.51 days 20 243.94 days 
503.88 days 306.96 days 243.38 days 

Table IV lists the librational period for each of the energy contours 

shown in Figure 2, working from the inside of the resonance structure 
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out (this, of course, excludes the unstable equilibrium contour which 

would have an infinite librational period). Use of the line integral 

method allows a means for determining the specific librational period 

associated with a given energy or displacement from the stable equilib­

rium points. It should be noted that decreasing the step size for the 

integration as a means of verification produced minor changes (less than 

one day) in the resulting periods. 

Occurrence of double entries in Table IV are the result of the 

.existence .of dual trajectories for a given energy level once outside of 

the stable equilibrium region. The librational period of each of the 

two contours of equal e~ergy is listed, with the outer of the two bands 

listed first. These periods may be more appropriately considered as a 

type of synodic period arising from the relative drift of satellites in 

different orbits; 

For Contours 1 through 6, which are within the stable equilibrium 

region, the basic period of libration is within the range of 700 to 900 

days often seen cited in the literature (Ref 1,4,5,6,7,14,16,18). As it 

turns out, the period of libration drops off quickly as a satellite 

librates closer to the stable point and approaches infinity as it nears 

the boundary of the stable region. This result is expected from th~ 

theors of unstable point analysis. 

Turning to the linearization method for determining the period of 

libration yields the comparable result of 667.10 days. Since this 

result is in good agreement with the existing literature and the results 

·of theprevious method and .is much less computationally intensive to 

obtain, this method was used to obtain the period of libration for the 

secondary resonance's stable region. It should be clear that it is 
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unnecessary to.obtain precise periods of libration for either resonance 

band for the purposes of this study, that is, to determine whether other 

practical stable equilibrium regions exist for the placement of communi-

cations satellites. The result of the determination of the libration 

period for the secondary resonance band is 228,289.46·days or approxi-

mately 625 years. 

(J) 

>­
<C 
0 

a 
2.~ 

Figure 3. -Librational Period-- Primary Resonance 

Combining the values listed in Table IV with the value obtained 

through the linearization method, Figure 3 illustrates how the libra-

tional period varies with changes in the generalized momentum S for a 
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fixed value of the generalized coordinate s corresponding to that of 

either of the stable equilibrium points. A minimum oscillatory period 

of 667.10 days occurs at the stable points. Moving radially away from 

these points result~ in an rapid increase in the librational period as 

the unstable contour is approached, with the period asymptotically 

approaching infinity. Once outside the stable region indicated by the 

two vertical lines, the period of oscillation quickly drops off, 

reflecting the relative drift of satellites in different orbits. 

It should be noted at this point that the assumption made in 

Chapter II on the development of this method was verified numerically. 

That .is, the cross partial terms did indeed prove to be negligible, 

being at least 10 orders of magnitude smaller than the other term in 

each equation. 

Conclusions 

Although some of the conclusicns to be drawn from this study have 

already been noted, there remain several more to be elucidated. In 

' 
·regard to the first objective, it has been demonstrated that additional 

stable equilibrium points do exist in the geosynchronous regime. The 

two being used in the primary resonance band have been well studied and 

thi~ investigation ~erves merely to reinforce previous conclusions. 

More ~ignificantly, however, are the results pertaining to the other two 

resonance bands. Although the third resonance band appears to be too 

small to be of any practical use in the cases considered, the second 

resonance band appears to be more than adequate in this regard. 

The second resonance band is not only wide enough for placement of 

communications satellites, its period of libration is sufficiently long 

enough not to cause significant problems for operational use. The only 
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tracking problem for ground stations for these orbits would result from 

the daily oscillation of the orbit due to its inclination. 

The st~ble points of the second resonance band and their span are 

more than adequately separated spatially from those of the primary 

resonance, and, it appears, can be separated in longitude by adjusting 

th~ argument of perigee. If this separation is indeed pos~ible, many 

equilibrium points exist, permitting placement· of many satellites at the 

stable points within this resonance region and allowing for a reduction 

in station-keeping. One problem, however, may prevent their practical 

use. 

This limitation involves an issue not directly addressed in this 

investigation. Since the secondary resonance band lies entirely within 

the much broader primary resonance band, in order to determine whether 

or not these new stable points are of any practical value would.require 

an analysis of the combined effects of the primary and secondary reso­

nance structures and the amount of station-keeping necessary to maintain 

positioning within the secondary resonance's stable region. 

Turning to the secondary objective, this investigation should have 

adequately demonstrated the feasibility of this general technique as a 

primary investigative tool for the study of resonance structures.. Any-

. one ~amiliar with the analytical methods required for an investigation 

of this magnitude will appreciate the relative simplicity of this numer­

ical approach to the problem. It is only hoped that this method will 

useful for further research in this area. 

Recommendations 

The primary avenues for further research on this topic center on 

the limitations listed in the Conclusions section above. It is the 
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author'·s belief that the major thrust of future research on this topic 

should involve developing a technique to analyze the stability of the 

secondary resonance's stable points in conjunction with the primary· 

resonance's effects in determining the station-keeping requirements 

necessary to maintain a satellite at one of these points. 

Should it prove feasible to maintain such orbits, further consider­

ation must necessarily be given to the problem of directional separa­

tion. It may turn out that the additional capacity for satellite place­

.ment in these orbits along with communications frequency separation will 

provide for expanded use of the geosynchronous orbit. And finally, it 

may be desirable to det~rmine the effect of the inclusion of additional 

zonal and tesseral harmonic terms on the conclusions of this and future 

studies. Although such inclusions should not drastically alter the 

overall. structures, they may affect the stability of these structures. 

One further recommendation should also be made in regard to the 

methods used for analytical techniques. This author found the recently 

developed forms of computer algebra programs of immense help in simpli­

fying the tedious expansions and developing the partial derivatives in 

Chapter II. The use of these programs, which are capable of doing 

algebra, trigonometric substitutions and simplifications, differentia­

tion,. and integration, should prove extremely valuable in pushing for­

ward the analytical methods without increasing the amount of human 

effort required. 
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~ I 

Appendix A 

Computer Programs and Subroutines 

The following is a listing of the computer programs used in the 

process of this investigation. The four main programs are listed first 

followed by the major subroutines employed. 

PROGRAM VALUE 
DOUBLE PRECIS ION J2, J4, J22,NO ,RAD ,SR,ECC, INC, X·, Y, Z,PI, 

lSTl,UNSTl,RCS,RESMN,RCU,RESMX,OF,ROOTl,ROOT2 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,RAD,SR,Y,Z,RES 
·ECC = 2 .5D-2 
INC = l.lD-1 

c ************************* 
C *** SAO III CONSTANTS.·*** 
c ·************************* 

J2 = 1082.6370-6 
J4 = -1.6179990-6 
J22 = 2.7438636D-6 

·NO = 5.86729371D-2 
RAn = 6.37814006 
SR = (100/N0)**(200/300) 
PRINT '("!NOMINAL RADIUS",F30.26," DU"/)', SR 
X = DSQRT(SR) 
Y = X*(lOO- DSQRT(lOO- ECC**2)) 
Z = X*DSQRT(lOO- ECC**2)*(1DO- DCOS(INC)) 
PI = 4DO*DATAN(lDO) 
STl = 300*PI/4DO . 
UNSTl = PI/400 

c ******************** 
C *** MAIN PROGRAM *** 
c ******************** 

DO 1 RES=l,3 
PRINT '(" RESONANCE ",II/)' , RES 
PRINT '(" STABLE 11

)' 

CALL RESON(RCS,STl,RESMN) 
PRINT ' (" UNSTABLE")' 
CALL RESON(RCU,UNSTl,RESMX) 
DF = RESMX - RESMN 
CALL ROOTS(RCS,STl,DF,ROOTl,ROOT2,RESMN) 
PRINT'(" ROOT 1 =",F30.26)', ROOT! 
PRINT'(" ROOT 2 =";F30.26)', ROOT2 
PRIN.T '(" WIDTH =11

., F20.5," METERS")', (ROOT2**2 - ROOT1**2)*RAD 
1 PRINT '(" DF =" ,D34.26/)', DF 

STOP 
END 
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The job control for program RSPLOT is included due to the machine 

dependent nature of the plotting routines used. Also note that the 

resonance of interest and scale factors must be specified in the FACTORS 

block. 

TSK,T200. T820730,KELS0,4289,10/26/82 
ATTACH,CCPLOT,CCPLOT1038,ID=LIBRARY,SN=ASD. 
LIBRARY,CCPLOT. 
FTN5. 
LGO. 
ROUTE,TAPEl,DC=PU,TID=AF,ST=CSA,FID=TSK. 
*EOR 

PROGRAM RSPLOT 
DOUBLE PRECISION J2,J4,J22,NO,SR,X,Y,Z,ECC,INC,PI,STl,ST2, 

lUNSTl,ZERO,DF,DFS,DFM,RCS,RESMN,RCU,RESMX,DEL,ROOTl,ROOT2 
REAL XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,SR,Y,Z,RES 
COMMON/SIZE/XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
CALL PLOTS(0,0,1) 
ECC = 2.5D-2 
INC = 1.1D-1 

c ************************* 
C *** SAO III CONSTANTS *** 
c ************************* 

J2 = 1082.6370-6 
J4 = -1.6179990-6 
J22 = 2.7438636D-6 
NO = 5.86729371D-2 ' 
SR = (1DO/N0)**(2D0/3DO) 
X = DSQRT( SR) 
Y = X*(lDO- DSQRT(lDO- ECC**2)) 
Z = X*DSQRT(lDO - ECC**2)*(1DO- DCOS(INC)) 
PI = 4DO*DATAN(lDO) 
STl = 3DO*PI/4DO 
ST2 = 7DO*PI/4DO 

• UNSTl = PI/ 4D.O 
ZERO = ODO 

c ***************************** 
C *** FACTORS - RESONANCE N *** 
c ***************************** 
C RES = N 
C XMIN = ***** 
C XMAX = ***** 
C DF = ***** 
C DFS = ***** 
C DFM = ***** 
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RSPLOT (Continued) 

c ******************** 
C *** MAIN PROGRAM *** 
c ******************** 

YMIN =.0.0 
YMAX = 2.0*SNGL(PI) 
XSCALE = (XMAX- XMIN)/5.0 
YSCALE = (YMAX - YMIN)/8.0 
CALL BOX 
CALL RESON(RCS,ST1,RESMN) · 
CALL RESON(RCU,UNST1,RESMX) 
DEL = PI/1D2 

10 IF (DF .LT. DFM) THEN 
CALL ROOTS(RCS,ZERO,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT1,ZERO,DEL) . 
CALL DRAW(ROOT2,ZERO,DEL) 
IF (RESMN + DF .LT. RESMX) THEN 

CALL ROOTS(RCS,ST1,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT2,ST1,DEL) 
CALL ROOTS(RCS,ST2,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT2,ST2,DEL) 
CALL DRAW(ROOT2,ST2,-DEL) 

END IF 
DF = DF + DFS 
GO TO 10 

END IF 
DF = RESMX - RESMN 
CALL ROOTS(RCS,ZERO,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT1,ZERO,DEL) 
CALL DRAW(ROOT2,ZERO,DEL) 
CALL ROOTS(RCS,ST1,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT1,ST1,DEL) . 
CALL DRAW(ROOT1,ST1,-DEL) 
CALL DRAW(ROOT2,ST1,DEL) 
CALL DRAW(ROOT2,ST1,-DEL) 
CALL ROOTS(RCS,ST2,DF,ROOT1,ROOT2,RESMN) 
CALL DRAW(ROOT1,ST2,DEL) 
CALL DRAW(ROOTl,ST2,-DEL) 

. CALL DRAW( ROOT2, S T2; DEL) 
CALL DRAW(ROOT2,ST2,-DEL) 
CALL PLOTE(O) 
STOP 
END 
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PROGRAM TIME 
DOUBLE PRECISION J2,J4,J22,NO,SR,ECC,INC,X,Y,Z,PI,STl,UNSTl,RCS, 

lRESMN,RCU,RESMX,DF,DFS,DFM,OEL,ROOTl,ROOT2 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,SR,Y,Z,RES 
ECC = 2'.5D-2 
INC = 1.1D-1 

c ************************* 
C *** SAO III CONSTANTS *** 
c ************************* 

J2 = 1082.6370-6 
J4 = -1.6179990-6 
J22 = 2.7438636D-6 
NO = 5.86729371D-2 
SR = (100/N0)**(200/300) 
X = OSQRT(SR) 
Y = X*(1DO- OSQRT(1DO- ECC**2)) 
·z = X*OSQRT(IOO- ECC**2)*(1DO- DCOS(INC)) 
PI = 400*0ATAN(lDO) 
ST1 = 3DO*PI/400 
UNST1 = PI/400 

c ·***************************** 
C *** FACTORS - RESONANCE N *** 
c ***************************** 
C RES = N 
C ·OF = ***** 
c OFS = ***** 
C DFM = ***** 
c ******************** 
C *** MAIN PROGRAM *** 
c ******************** 

CALL RESON(RCS,ST1,RESMN) 
CALL RESON(RCU,UNST1,RESMX) 
DEL = PI/1D3 . 

10 IF (OF .LT. DFM) THEN 
CALL ROOTS(RCS,STl,DF,ROOT1,ROOT2,RESMN) 
CALL PERIOD(ROOT2,STl,DEL) 
IF (DF .GT. RESMX-RESMN) CALL PERIOD(ROOT1,ST1,DEL) 
PRINT I ("0") I 
DF = DF + DFS 
GO TO 10 

END IF 
STOP 
END 
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PROGRAM TIMES 
DOUBLE PRECISION J2,J4,J22,NO,SR,X,Y,Z,ECC,INC,PI,ST1, 

lRCS,RESMN,XX,YY,DX,DY,DXX,DYY,W,Wl,W2,SID,CON,PER 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,SR,Y,Z,RES 
ECC = 2.5D-2 
INC = 1 • 1 D-1 . 

c ************************* 
C *** SAO III CONSTANTS *** 
c ************************* 

J2 = 1082.637D-6 
J4 = -1.617999D-6 
J22 = 2.7438636D-6 
NO = 5.86729371D-2 
SR = (1DO/N0)**(2D0/3DO) 
X = DSQRT(SR) 
Y = X*(IDO- DSQRT(lDO- ECC**2)) 
Z = X*DSQRT(lDO - ECC**2)*(1DO - DCOS(INC)) 
PI = 4DO*DATAN(lDO) 
SID = 1.0027379093100 
CON = NO/SID 
STl = 3DO*PI/4DO 

c ******************** 
C *** MAIN PROGRAM *** 
c ******************** 
C RES = N 

CALL RESON(RCS,STl,RESMN) 
DXX = lD-9 
DYY = lD-9 
XX = RCS + DXX 
YY = STl + DYY 
CALL FDF(RCS,YY,F,DX,DY) 
Wl = DSQRT(DABS(DY/DYY)) 
CALL FDF(XX,STl,F,DX,DY) 
W2 = DSQRT(DABS(DX/DXX)) 
W = WI * W2 
PER= CON/W 
PRINT '(" PERIOD =",FlO. 2," DAYS")' , PER 
STOP 
END 

Below is a sample FACTORS block, the one used for this study. 

c ***************************** 
C *** FACTORS - RESONANCE 1 *** 
c ***************************** 

RES = 1 
XMIN = 2.57 
XMAX = 2.58 
DF = SD-9 
DFS = lD-8 
DFM = 2D-7 
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c 
c 

The remainder of Appendix A is a listing of major subroutines. 

SUBROUTINE BOX 
REAL P(1:7),Q(l:7),XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
COMMON/SIZE/XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
CALL PLOT(0.0,-0.5,-3) 
CALL PLOT(O.O,l.S,-3) 
P( 1) = XMIN . 
P(2) = XMIN 
.P(3) = XMAX 
P(4) = XMAX . 
P(5) = XMIN 
P(6) = XMIN 
P(7) = XSCALE 
Q(l) = YMIN 
Q(2) = YMAX 
Q(3) = YMAX 
Q(4) = YMIN 
Q(5) = YMIN 
Q(6) = YMIN 
Q(7) = XSCALE 
CALL LINE(P,Q,5,l,O,O) 
RETURN 
END 

SUBROUTINE RESON(S,SY,F) 
DOUBLE PRECISION S,SY,F,J2,J4,J22,NO,RAD,SR,Y,Z,DS,DX,DY 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,RAD,SR,Y,Z,RES 
S = 2DO 
DS = 2DO 

30 IF (DS .GT. lD-28) THEN 
DS = DS/2DO 
CALL FDF(S,SY,F,DX,DY) 
S = S - DS * DSIGN(lDO,DX) 
GO TO 30 

END IF 
PRINT'(" RADIUS =",F30.26," DU")', S**2 

. PRINT '(" DISTANCE FROM NOMINAL =",Fl2.5," METERS")', 
1 (S**2 - SR)*RAD 
PRINT'(" S =",F30.26/)', S 
RETURN 
END 
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The above.listing of RESON was used only in VALUE. The following 

listing was used in all other programs. 

c 
c 

SUBROUTiNE RESON(S,SY,F) 
DOUBLE PRECISION S,SY,F,DS,DX,DY 
S = 2DO 
DS = 2DO 

30 IF (DS .GT. lD-28) THEN 
DS = DS/2DO 
CALL FDF(S,SY,F,DX,DY) 
S = S - DS * DSIGN(lDO,DX) 
GO TO 30 

END IF 
RETURN 
END. 

SUBROUTINE ROOTS(X,Y,DF,ROOTl,ROOT2,FMIN) 
DOUBLE PRECISION X,Y,DF,ROOTl,ROOT2,FMIN,F,FN,Fl,F2,DX,DY 
F :;:; FMIN + DF 
CALL FDF(X,Y,FN,DX,DY) 
IF (FN .GT •. F) THEN 

. ROOT! = ODO 
ROOT2 = ODO 

ELSE 
ROOT! = 2DO 

41 CALL FDF(ROOTl,Y,Fl,DX,DY) 
ROOT! = ROOT! - (Fl-F)/DX 
IF (DABS(F-Fl) .GT. lD-28) GO TO 41 
ROOT2 = 3DO 

42 CALL FDF(ROOT2,Y,F2,DX,DY) 
ROOT2 = ROOT2 ~ (F2-F)/DX 
IF (DABS(F-F2) .GT. lD-28) GO TO 42 

END IF 
RETURN 
END 
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SUBROUTINE DRAW(ROOT,SY,DLT) 
DOUBLE PRECISION ROOT,SY,DLT,PI2,DEL,X,Y,XN,YN,F 
REAL P(1:2500),Q(1:2500),XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
INTEGER N,IOK,ICAS 
COMMON/SIZE/XMIN,XMAX,YMIN,YMAX,XSCALE,YSCALE 
IF (ROOT .EQ. ODO) RETURN 
PI2 = 8DO*DATAN(IDO) 
DEL = DLT 
N = 1 
P(N) = SNGL(ROOT) 
Q(N) = SNGL(SY) 
!CAS = 0 
CALL CONTUR(ROOT,SY,DEL,XN,YN,IOK,ICAS,F) 
X = ROOT 

51 IF (IOK .NE. 0) THEN 
IF (YN .GT. PI2+DEL/2DO .OR. YN .LT. ODO) GO TO 52 
N = N + 1 
P(N) = SNGL(XN) 
Q(N) = SNGL(YN) 
IF (DABS(YN-SY) .LT. DABS(DEL/2DO) .AND. X .LT. XN) GO TO 52 
X= XN 
y = YN 
CALL CONTUR(X,Y,DEL,XN,YN,IOK,ICAS,F) 
GO TO 51 

END IF 
IF (N .EQ. 1) RETURN 

52 P(N+1) = XMIN 
P(N+2) = XSCALE 
Q(N+1) = YMIN 
Q(N+2) = YSCALE 
CALL LINE(P,Q,N,1,0,0) 
RETURN 
END ' 
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SUBROUTINE PERIOD(ROOT,SY,DLT) 
DOUBLE PRECISION ROOT,SY,DLT,J2,J4,J22,NO,SR,Y,Z,PI2,SID,CONV, 

lDEL,XO,YO,XN,YN,F,DX,DY,PER . 
COMMON/SAO/J2,J4,J22,NO,SR,Y,Z,RES 
INTEGER RES,IOK,ICAS 
PI2 =·8DO*DATAN(lDO) 
SID= l.00273790931DO 
CONV = NO/PI2/SID 
DEL = DLT . 
XO = ROOT 
YO = SY 
PER = ODO 
!CAS = 0 
CALL CONTUR(XO,YO,DEL,XN,YN,IOK,ICAS,F) 

51 IF (IOK .NE. 0) THEN 
IF (YN .GT. PI2+DEL/2DO) GO TO 52 
CALL FDF(XN,YN,F,DX,DY) 
IF (!CAS .EQ. 1) THEN 

PER = PER + DABS( (YN-YO)/DX) 
ELSE 

PER = PER + DABS( (XN-XO)/DY) · 
END IF 
IF (DABS(YN-SY) ·.LT. DABS(DEL/2DO) .AND. XO .LT. XN) GO TO 52 
XO = XN 
YO= YN 
CALL CONTUR(XO,YO,DEL,XN,YN,IOK,ICAS,F) 
GO TO 51 

END IF 
52 PRINT ' (" PERIOD =", F9. 2," DAYS")' , PER*CONV 

RETURN 
END 
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SUBROUTINE CONTUR(X,Y,DEL,XNEW,YNEW,IOK,ICAS,FF) 
DOUBLE PRECISION X,Y,DEL,XNEW,YNEW,FF,TOLXY,TOLF,FDG,F,DFDX,DFDY, 

lDX,DY,DFPDX,DFPDY,RES,FP,ERRFl,ERRF2,ERRF,ERRXYl,ERRXY2,ERRXY 
INTEGER NL,IOK,ICAS,I 
TOLXY = lD-22 
TOLF = lD-28 
FOG = 502 
!OK = 1 
NL = 50 
CALL FDF(X,Y,F,DFDX,DFDY) 
IF (!CAS .EQ. 0) FF = F 
IF (DABS(DFDY) .GT. DABS(DFDX/FDG)) THEN 

c ********************* 
C *** SHALLOW SLOPE *** 
c ********************* 

IF (!CAS .EQ. 0) !CAS = -1 
IF. (!CAS .EQ. 1) THEN 

DEL = -DEL * DSIGN(lDO,DFDX) * DSIGN(lDO,DFDY) 
!CAS = -1 

END IF 
XNEW = X + DEL/FOG 
YNEW = Y 
DY = -DFDX*DEL/DFDY/FDG 
DO 61 I = 1 ,NL 

YNEW = YNEW + DY 
CALL FDF(XNEW,YNEW,FP,DFPDX,DFPDY) 
RES = FP - FF 
DY = -RES/DFPDY 
ERRF 1 = DABS (RES) 
ERRF2 = DABS(ERRFl/FF) 
ERRF = DMINl(ERRFl,ERRF2) 
ERRXY1 = DABS(DY) 
ERRXY2 = !DO ' 
IF (YNEW .NE. ODO) ERRXY2 = DABS(DY/YNEW) 
ERRXY = DMINl(ERRXYl,ERRXY2) 

· 61 IF (ERRXY .LT. TOLXY .AND. ERRF .LT. TOLF) GO TO 63 
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~ CONTUR (Continued) 

c ******************* 
C *** STEEP SLOPE *** 
c ******************* 

ELSE 
IF (ICAS .EQ. 0) !CAS = 1 
IF (!CAS .EQ. ·-1) THEN 

DEL = -DEL * DSIGN(1DO,DFDX) * DSIGN(lDO,DFDY) 
!CAS = 1 

62 

END IF 
XNEW = X 
YNEW = Y + DEL 
DX = -DFDY*DEL/DFDX 
DO 62 I = 1 ,NL 

XNEW = XNEW + DX 
CALL FDF(XNEW,YNEW,FP,DFPDX,DFPDY) 
RES = FP - FF . 
DX = -RES/DFPDX 
ERRF1 = DABS(RES) 
ERRF2 = DABS(ERRF1/FF) 
ERRF = DMIN1 (ERRFl ,ERRF2) 
ERRXYl = DABS(DX) 
ERRXY2 = DABS(DX/XNEW) 
ERRXY = DMIN1(ERRXYl,ERRXY2) 
IF (ERRXY .LT. TOLXY .AND. ERRF .LT. TOLF) GO TO 63 

END IF 
IOK = 0 

63 RETURN 
END 
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The COMMON and DOUBLE PRECISION blocks of FDF should contain the 

variable RAD when run with program VALUE. 

SUBROUTINE FDF(X,XX,F,DFDX,DFDXX) 
DOUBLE PRECISION X,XX,F,DFDX,DFDXX,J2,J4,J22,NO,RAD,SR,Y,Z,Q,R,S, 

lA,B ,C, FO, F1, F2, F4., R22, DFDXO, DFDXl, DFDX2, OFOX4, OFOX22 
INTEGER RES 
COMMON/SAO/J2,J4,J22,NO,RAD,SR,Y,Z,RES 
Q = Y - OBLE(RES-1)*DSQRT(SR) 
R = Z + DBLE(RES-1)*0SQRT(SR) 
S = X 
GO TO (71,72,73) RES 

c ********************* 
C *** 1ST RESONANCE *** 
c ********************* 

71 A = S/(S - Q) 
B = R/(S - Q) 
C = Q/S 

c **************** . 
C *** J22 TERM *** 
c **************** 

R22 = J22/(X**6)*(4DO - 400*B + B**2)*(288DO - 144Dl*C 
1+ 1656DO*C**2 - 1216DO*C**3 + 654DO*C**4 - 21Dl*C**5 + 35DO*C**6) 
2*DSIN(2DO*XX)/384DO 

c *************************** 
C . *** MOMENTUM DERIVATIVE *** 
c *************************** 

DFDXl = J2/(X**7)*(A**3*(- 600 + 18DO*B - 9DO*B**2) + A**4*(- 600 
1+ 24DO*B- 15DO*B**2))/4DO 

DFDX2 = J2**2/(X**11)*(A**5*(12D1 - 24Dl*B - 18D1*B**2 
1+ 3D2*B**3 - 75*B**4) + A**6*(- 7200 + 864DO*B - 2556DO*B**2 
2+ 2208DO*B**3 - 567DO*B**4) + A**7*(- 64800 + 34S.6DO*B 
3- 6588DO*B**2 + 5148DO*B**3 - 1395DO*B**4) + A**8*(- 8401 
4+ 384Dl*B- 594Dl*B**2 + 4202*B**3 - 1155*B**4))/12800 

OFOX4 = 3DO*J4/(X**ll)*((A**5 - A**7)*(- 1201 + 1202*B 
1- 2702*B**2 + 2102*B**3 - 525DO*B**4) + A**6*(- 1201 
2+ 144D1*B - 3780l*B**2 + 33601*B**3 - 945DO*B**4) + A**8*(2801 
3- 32D2*B + 81D2*B**2- 7D3*B**3 + 192500*B**4))/12800 
. OFDX22 = 3DO*J22/(X**7)*((4DO- 4DO*B + B**2)*(- 28800 
1+ 168Dl*C - 2208DO*C**2 + 1824DO*C**3 - 109Dl*C**4 + 385DO*C**5 
2- 7D1*C**6)/48DO + A*(400*B - 2DO*B**2)*(288DO - 144Dl*C 
3+ 1656DO*C**2 - 121600*C**3 + 654DO*C**4 - 2101*C**5 + 35DO*C**6) 
4/288DO)*DSIN(200*XX)/4DO 

c *************************** 
C *** POSITION DERIVATIVE *** 
c *************************** 

DFDXX = J22/X**6*(400 - 4DO*B + B**2)*(288DO 
1- 144Dl*C + 1656DO*C**2 - 1216DO*C**3 + 654DO*C**4 - 2101*C**5 
2+·35DO*C**6)*DCOS(2DO*XX)/192DO 

GO TO 74 
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~ FDF (Continued) 

c ********************* 
C *** 2ND RESONANCE *** 
c ********************* 

c 
c 
c 

c 
c 
.c 

c 
c 
c 

72 A = -S/Q 
B = (S - R)/Q 
C = (Q + S)/S 
**************** 
*** J22 TERM *** 
**************** 
R22 = J22/(X**6)*(3D0/128D0*(2DO*B - B**2)*(288DO*C + 304DO*C**2 

1+ 68Dl*C**3 - 158Dl*C**4 + 846DO*C**5 - 141DO*C**6))*DSIN(2DO*XX) 
*************************** 
*** MOMENTUM DERIVATIVE *** 
*************************** 
·DFDX1 = J2/(X**7)*(A**3*(- 600 + 18DO*B - 9DO*B**2) + A**4*(6DO 

1- 6DO*B))/4DO 
DFDX2 = J2**2/(X**11)*(A**5*(12D1 - 24Dl*B- 18Dl*B**2 

1+ 3D2*B**3 - 75DO*B**4) + A**6*(- 24Dl + 108D1*B - 2124DO*B**2 
2+ I668DO*B**3 - 432DO*B**4) + A**7*(- 72DO + 288DO*B - 684DO*B**2 
3+ 828DO*B**3 - 315DO*B**4) + A**8*(48Dl - 132Dl*B + 126Dl*B**2 
4- 42D1*B**3))/128DO 

DFDX4 = 3DO*J4/(X**ll)*((A**5 - A**7)*(- 12Dl + 12D2*B 
1- 27D2*B**2 + 21D2*B**3 - 525DO*B**4)/16DO + (3DO*A**6 
2-· 5DO*A**8)*(6Dl - 27Dl*B + 315DO*B**2 - 105DO*B**3)/12D0)/8DO 

DFDX22 = 3DO*J22/(X**7)*((2DO*B - B**2)*(144DO - 704DO*C 
I~l96DO*C**2 - 622D1*C**3 + 10015DO*C**4 - 5076DO*C**5 
2+ 846DO*C**6)/64DO - A*(2DO - 2DO*B)*(288DO*C + 304DO*C**2 
3+ 68Dl*C**3 - 158Dl*C**4 + 846DO*C**5 - 141DO*C**6)/128DO) 
4*DSIN(2DO*XX) 
*************************** 
*** POSITION DERIVATIVE *** 
*************************** 
DFDXX = J22/(X**6)*(3D0/64D0*(2DO*B - B**2)*(288DO*C + 304DO*C**2 

1+ 68Dl*C**3 - 158Dl*C**4 + 846DO*C*,\-5 - 141DO*C**6) )*DCOS(2DO*XX) 
GO TO 74 
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~ FDF (Continued) 

c ********************* 
C *** 3RD RESONANCE *** 
c ********************* 

73 A = -S/(S + Q) 
B = (2DO*S - R)/(S + Q) 
C = (2DO*S + Q)/S 

c **************** 
C *** J22 TERM *** 
c **************** 

c 
c 
c 

c 
·c 
c 

R22 = J22/(X**6)*B**2*(4Dl*C**2 + 16DO*C**3 - 74DO*C**4 
1+ 42DO*C**5 - 7DO*C**6)*DSIN(2DO*XX)/32Dl 
*************************** 
*** MOMENTUM DERIVATIVE *** 
*************************** 
DFDX1 = J2/(X**7)*(A**3*(- 6DO + 18DO*B - 9DO*B**2) + A**4*(18DO 

1- 36DO*B + 15DO*B**2))/4DO 
DFDX2 = J2**2/(X**11)*(A**5*(12D1 - 24D1*B - 18D1*B**2 

1+ 3D2*B**3 - 75DO*B**4) + A**6*(- 408DO + 1296DO*B - 1692DO*B**2 
2+ 1128DO*B**3 - 297DO*B**4) + A**7*(504DO - 288D1*B + 522D1*B**2 
3- 3492DO*B**3 + 765DO*B**4) + A**8*(18D2 - 648Dl*B 
4+ 846D1*B**2 - 504D1*B**3 + 1155DO*B**4))/128DO 

DFDX4 = 3DO*J4/(X**11)*((A**5 - A**7)*(- 12D1 + 12D2*B 
1- 27D2*B**2 + 21D2*B**3 - 525DO*B**4) + A**6*(6D2 - 36D2*B 
2+ 63D2*B**2 - 42D2*B**3 + 945DO*B**4) + A**B*(- 10801 
3+ 68D2*B - 123D2*B**2 + 84D2*B**3 - 1925DO*B**4))/128DO 

DFDX22 = 3DO*J22/(X**7)*(B**2*(8D1*C - 112DO*C**2 - 368DO*C**3 
1+ 58D1*C**4 - 273DO*C**5 + 42DO*C**6) - A*(2DO*B - B**2) 
2*(4D1*C**2 + 16DO*C**3 - 74DO*C**4 + 42DO*C**5 - 7DO*C**6)) 
3*DSIN(2DO*XX)/48D1 
*************************** 
*** POSITION DERIVATIVE *** 
*************************** 

' 

DFDXX = J22/(X**6)*B**2*(4D1*C**2 + 16DO*C**3 - 74DO*C**4 
1+ 42DO*C**5 - 7DO*C**6)*DCOS(2DO*XX)/16Dl 

c ******************* 
C *** HAMILTONIAN *** 
c *~***************~* 

7~ FO = 1DO/(X**2)/2DO 
F1 = J2/(X**6)*A**3*(2DO - 6DO*B + 3DO*B**2)/4DO 
F2 = J2**2/(X**10)*(3D0/32DO*A**5*(- 8DO + 16DO*B + 12DO*B**2 

1- 2D1*B**3 + 5DO*B**4) + 3D0/8DO*A**6*(4DO - 24DO*B + 48DO*B**2 
2- 36DO*B**3 + 9DO*B**4) - 15D0/32DO*A**7*(- 8DO + 32DO*B 
3- 44DO*B**2 + 28DO*B**3 - 7DO*B**4))/4DO 

F4 = J4/(X**10)*(9DO*A**5 - 15DO*A**7)*(8DO - 8D1*B 
1+ 18D1*B**2 - 14D1*B**3 + 35DO*B**4)/128DO 
F = FO + F1 + F2 + F4 + R22 + NO*X 
DFDXO = - 1DO/X**3 
DFDX = DFDXO + DFDX1 + DFDX2 + DFDX4 + DFDX22 + NO 
RETURN 
END 
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Appendix B 

Computer Output 

Appendix B contains a summary of the output generated for the 

program VALUE. All other relevant computer output is_summarized withi~ 

the text of the thesis. The first set of values, for Resonance 1 only, 
. . 

was computed for zero eccentricity and i-.:tclination. All o.ther 

calculations assume e = 0.25 and i = 0.11 radians. 

NOMINAL RADIUS 6.62279705974354939872109534 DU 

RESONANCE 1 

STABLE 
RADIUS = 6.62311903956047332338676051 DU 
DISTANCE FROM NOMINAL = 2053.63235 METERS 
s = 2.57354211925130017355733216 

UNSTABLE 
RADIUS = 6.62312898069230474566012610 DU 
DISTANCE FROM NOMINAL= 2117.03828 METERS 
s = 2.57354405066093724823231373 

ROOT 1 = 2.57225535879742894051568446 
ROOT 2 = 2.57482973825684011213949358 
WIDTH = 84513.86393 METERS 
DF = .56666332874386549500224905D-07 

RESONANCE 1 

STABLE 
RADIUS = 6.62311254138901482663038207 DU 

-DISTANCE FROM NOMINAL = 2012.18610 METERS 
s = 2.57354085675534104714050865 

UNSTABLE 
RADIUS = 6.62312239460014021257026258 DU 
DISTANCE FROM NOMINAL = 2075.03126 METERS 
s = 2.57354277108427716384806879 

ROOT 1 = 2.57225898236003338751447668 
ROOT 2 = 2.57482358318862921027817112 
WIDTH =· 84192.80152 METERS 
DF = .562365526.74965968019912343D-07 
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RESONANCE 2 

STABLE 
RADIUS = 6.62279504161728455154854446 DU 
DISTANCE FROM NOMINAL = -12.87189 METERS 
s = 2.57347917062044326769576973 

UNSTABLE 
RADIUS = 6.62279499906509052836411341 DU 
DISTANCE FROM NOMINAL = -13.14330 METERS 
s = 2.57347916235299844488103640 

ROOT 1 = 2.57347542322313551926585699 
ROOT 2 = 2.57348291802502672216083357 
WIDTH = 246.03951 METERS 
DF = .48024587235371029523549358D-12 

RESONANCE 3 

STABLE 
RADIUS = 6.62247259764080133997643103 DU 
DISTANCE 'FROM NOMINAL = -2069.46472 METERS 
s = 2.57341652237658591978112241 

UNSTABLE 
RADIUS = 6.62247259764079875539562401 DU 
DISTANCE FROM NOMINAL = -2069.46472 METERS 
s = 2.57341652237658541761196624 

ROOT 1 = 2.57341652195460740223585979 
ROOT 2 = 2.57341652279856443771039969 
WIDTH = .02770 METERS 
DF = .60909469144020180570086397D-20 
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